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Abstract. Multilevel regression models are widely utilized in various fields, such as health, 

education, and agriculture, due to their ability to address dependencies between variables at 

different levels of aggregation. This study compares two estimation methods for parameters in 

multilevel regression models: the maximum likelihood method (MLE) and the variance constraints 

method (RCR). Utilizing simulation experiments repeated 1000 times across different sample sizes 

(15, 40, and 60), the study evaluates these methods using the Akaike Information Criterion (AIC) 

and mean square error (MSE). Results indicate that the MLE consistently outperforms the RCR in 

terms of lower AIC and MSE values, especially as sample size increases. Despite the closeness in 

efficiency between the methods at smaller sample sizes, the MLE's superiority becomes more 

pronounced with larger samples, suggesting its robustness and reliability for parameter estimation 

in multilevel regression models. This finding is crucial for researchers seeking accurate and efficient 

estimation techniques in hierarchical data analysis.  

Keywords: Multilevel Regression, Maximum Likelihood, Variance Constraints, Parameter 

Estimation, Simulation Study 

1. Introduction 

There is an increasing interest in educational and social research regarding the 

challenges of defining the relationships between variables that are at different levels of 

aggregation.In the field of school effectiveness research, one can be interested in studying 

the impact of the school budget on the academic performance of children.However, the 

former variable is specified at the school level, whereas the later variable is defined at the 

student level.This leads to challenges in accurately understanding the interrelationships 

between these factors.These challenges can be addressed by utilizing multilevel models, 

as suggested by Bryk and Raudenbush (1992), de Leeuw and Kreft (1986), Goldstein (1995), 

Longford (1993), and Raudenbush (1988).In the above example, students are organized 

hierarchically within schools. In a multilevel model, the students would constitute the first 

level, while the schools would represent the secondary level.The multilevel paradigm is 

primarily used in regression and analysis of variance models, as demonstrated by Bryk 

and Raudenbush. However, it can be applied to any statistical modeling of data where 

there are nested elementary units inside aggregates.Longford provides illustrations of 

multilevel factor analytical models and generalized linear models [1]. 
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Furthermore, the multilevel paradigm has been applied in several instances within 

the field of IRT models.Adams, Wilson, and Wu (1997) examine the inclusion of latent 

proficiency characteristics as dependent variables in a regression analysis.The study 

demonstrates that a regression model using latent proficiency variables can be understood 

as a two-level model. The first level is comprised of the item response measurement model, 

which represents the within-student model [2]. The second level is the model on the 

student population distribution, which represents the between-students 

model.Additionally, Adams et al. demonstrate that this method leads to a suitable 

handling of measurement error in the dependant variable of the regression model.Mislevy 

and Bock (1989) demonstrated another use of multilevel modeling in the context of IRT 

models. They developed a hierarchical IRT model that combines group-level and student-

level effects.Both applications can be considered as specific instances of the overall method 

described in this context.This strategy involves using a multilevel regression model to 

analyze latent proficiency factors. The model allows for predictors at both the student-level 

and group-level [3][4]. 

 

2. The Multilevel Regression Model 

The multilevel regression model is known in the statistical literature under a variety 

of names: hierarchical linear model, random coefficient model, variance component 

model, and mixed (linear) model [5][6]. Most often it assumes hierarchical data, with one 

response variable measured at the lowest level and explanatory variables at all existing 

levels. Conceptually, the model is often viewed as a hierarchical system of regression 

equations. For example, assume we have data in 𝐽 groups or contexts and a different 

number of individuals 𝑁𝑓 in each group. On the individual (lowest) level we have the 

dependent variable 𝑌𝑖𝑓 and the explanatory variable 𝑋𝑖𝑓, and on the group level we have 

the explanatory variable 𝑍𝑓. Thus, we have a separate regression equation in each group:  

𝑌𝑖𝑓  =  𝛽0𝑓  +  𝛽1𝑗𝑋𝑖𝑓 + 𝑒𝑖𝑓   (1) 

In Eq. (1) 𝛽0 is the usual regression intercept, 𝛽1, is the regression slope for the 

explanatory variable X, and 𝑒𝑖𝑓 is the residual term. The regression coefficients 𝛽 carry a 

subscript 𝑗 for the groups, which indicates that the regression coefficients may vary across 

groups. The variation in the regression coefficients 𝛽𝑗 is modeled by explanatory variables 

and random residual terms at the group level:  

𝛽𝑖𝑓  =  𝛾00  +  𝛾01𝑍𝑗 + 𝑢0𝑗    (2)  

𝛽1𝑓  =  𝛾10  +  𝛾11𝑍𝑗 + 𝑢1𝑗    (3)  

Substitution of Eqs. (2) and (3) into Eq. (1) produces the single-equation version of 

the multilevel regression model:  

𝑌𝑖𝑓  =  𝛾00  + 𝛾10𝑋𝑖𝑗 + 𝛾01𝑍𝑗 + 𝛾11𝑍𝑗𝑋𝑖𝑓 + 𝑢1𝑓𝑋𝑖𝑓 + 𝑢0𝑗 + 𝑒𝑖𝑓  (4)  

In general, there will be more than one explanatory variable at the lowest level and 

also more than one explanatory variable at the highest level. Assume that we have P 

explanatory variables X at the lowest level, indicated by the subscript 𝑝 (𝑝 = 1,… . , 𝑃), and 

Q explanatory variables Z at the highest level, indicated by the subscript 𝑞 (𝑞 = 1,… . , 𝑄), 

Then, Eq. (4) becomes the more general equation:  

𝑌𝑖𝑓 = 𝛾00 + ∑𝑃 𝛾𝑝0𝑋𝑝𝑖𝑓 + ∑𝑞 𝛾0𝑞𝑍𝑞𝑗 + ∑𝑞 ∑𝑝 𝛾𝑝𝑞𝑍𝑝𝑗𝑋𝑝𝑖𝑗 +

∑𝑝 𝑢𝑝𝑗𝑋𝑝𝑖𝑓 + 𝑢0𝑗 + 𝑒𝑖𝑓  (5) 
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In Eq. (5), they are the usual regression coefficients, the u terms are residuals at the 

group level, and the e term represents the residual at the individual level. The regression 

coefficients are identified as the fixed part of the model because this part does not change 

over groups or individuals. The residual error terms are identified as the random or 

stochastic part of the model.[2][7]  

The assumptions of the most commonly used multi-level regression model are that 

the residuals at the lowest level  𝑒𝑖𝑓 have a normal distribution with a mean of zero and a 

common variance 𝜎2 in all groups. The second-level residuals  𝑢0𝑗 and  𝑢𝑝𝑗 are assumed to 

be independent of the lowest level errors  𝑒𝑖𝑓 and to have a multivariate normal 

distribution with means of zero. Other assumptions, identical to the common assumptions 

of a multiple regression analysis, are fixed predictors and linear relationships. Most 

multilevel software assumes by default that the variance of the residual errors  𝑒𝑖𝑓 is the 

same in all groups. However, certain forms of heteroscedasticity can be explicitly 

modeled.  

3. Estimation methods for a multilevel model 

Marginal likelihood and model evidence for the linear model [8] 

The marginal likelihood for linear models can often be found in Bayesian textbooks, 

such as [8], though for clarity, we include the this using the notation above. The marginal 

likelihood is:  

𝑝(𝑀, 𝜎2) = ∫
𝑅4 𝑝(𝐷|𝑀, 𝛽, 𝜎2)𝑝(𝑀)𝑑𝛽  

= ∫
𝑅4

1

(𝑥𝜋)
𝑑
2|𝛴|

1
2

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
1

2
 (𝛽 − 𝜇)𝑇𝛴−1(𝛽

− 𝜇))∏

𝑖

1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

1

2𝜎2
(𝑦𝑖 − 𝛽𝑇𝑥𝑖)

2)𝑑𝛽 

=
1

(2𝜋)(𝑑+𝑛)/2|𝛴|
1
2 𝜎2

∫
𝑅4

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
1

2
 (𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇)

+
1

𝜎2
∑

𝑖

(𝑦𝑖 − 𝛽𝑇𝑥𝑖)
2))𝑑𝛽 

Finally, we get the marginal likelihood for the simple multilevel linear model: [2] 

𝑝(𝑀, 𝜎𝑦
2, 𝜎𝜂

2) =
|𝛴|1/2

(2𝜋𝜎𝑚
2 )𝑛/2|𝛴|1/2

∏

𝑗

(√
𝜎𝑦

2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

) ×

𝑒𝑥𝑝 𝑒𝑥𝑝 

(

 
 

−
1

2
(𝜇𝑇𝛴−1𝜇 +

1

𝜎𝑦
2
∑

𝑖,𝑗

𝑦𝑖𝑗
2

−
1

𝜎𝑦
2
 (∑

𝑗

𝜎𝜂
2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

2
(∑

𝑖

𝑦𝑖𝑗)

2

) − 𝜇−𝑇𝛴−1𝜇 ̀́)

)

 
 

  

As before, a version of this marginal likelihood derivation can also be found in [8], 

but, in this case, it is given in simplified matrix algebra form, where the dependence on 𝜎𝑦
2 

and 𝜎𝜂
2, is left unspecified.  



 47 
 

  
International Journal of Discoveries and Innovations in Applied Sciences 2024, 4(3), 44–54.                                                  https://openaccessjournals.eu/index.php/ijdias 

Marginal likelihood for a general multilevel linear model [1][4][10] 

In the more general case (Eq. 4), the steps are almost identical:  

𝑝(𝑀, 𝜎𝑦
2, 𝑣) = ∫

𝑅4

∫
𝑅𝑚𝑥3

1

(2𝜋)𝑑/2|𝛴|
1
2 

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
1

2
(𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇))

×  ∏

𝑖

1

(2𝜋)𝑟𝑛/2|𝛴|1/2
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

1

2
𝜂𝑗

𝑇 ∑

−1

𝜂

(𝑣)𝜂𝑗)  

× ∏

𝑖.𝑗

1

√2𝜋𝜎𝑦
2
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗 − 𝜂𝑗
𝑇𝑥𝑥𝑖𝑗)

2

2𝜎𝑦
2

)  𝑑𝜂𝑑𝛽 

=
1

𝜎𝑦
2|𝛴𝜂(𝑣)|

𝑚
2 (2𝜋) (𝑛+𝑑+𝑚𝐽)/2

× ∫
𝑅𝑑+𝑚𝐽 𝑒𝑥𝑝 𝑒𝑥𝑝 (− 1

2
(𝛽 − 𝜇)) ×

𝑒𝑥𝑝 𝑒𝑥𝑝 (− 1

2
 ∑𝑗 𝜂𝑗

𝑇 ∑−1
𝜂 (𝑣)𝜂𝑗 −

1

2𝜎𝑦
2 ∑𝑖 (𝑦𝑖𝑗 − 𝛽

𝑇
𝑥𝑖𝑗 − 𝜂𝑗

𝑇𝑧𝑖𝑗)
2
)𝑑𝜂𝑑𝛽  

Then: 

(𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇) + ∑

𝑖

𝜂𝑗
𝑇 ∑

−1

𝜂

𝜂𝑗 +
1

𝜎𝑦
2
∑

𝑖,𝑗

(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗 − 𝜂𝑗
𝑇𝑧𝑖𝑗)

2 

= (𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇)∑

𝑖

(𝜂𝑗
𝑇 (𝛴𝜂

−1 +
1

𝜎𝑦
2
∑

𝑖

𝑧𝑖𝑗𝑧𝑖𝑗
𝑇)𝜂𝑗

− 𝜂𝑗
𝑇 (

1

𝜎𝑦
2
∑

𝑖

𝑧𝑖𝑗(𝑦𝑖𝑗 − 𝛽𝑇𝑧𝑖𝑗))

− (
1

𝜎𝑦
2
∑

𝑖

(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗)𝑧𝑖𝑗)𝜂𝑗 +
1

𝜎𝑦
2
∑

𝑖

(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗)
2) 

= (𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇)

+ ∑

𝑗

((𝜂𝑗 − 𝜇𝜂,𝑗)
𝑇 ∑

−1

𝑛,𝑗

(𝜂𝑗 − 𝜇𝜂,𝑗) +
1

𝜎𝑦
2
∑

𝑖

(𝑦𝑖𝑗

− 𝛽𝑇𝑧𝑖𝑗)
2 − 𝜇𝜂𝑗

𝑇 ∑

−1

𝜂𝑗

𝜇𝑛,𝑗) 

= (𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇) + ∑

𝑗

((𝜂𝑗 − 𝜇𝑛,𝑗)
𝑇 ∑

−1

ℎ,𝑗

(𝜂𝑗 − 𝜇𝜂,𝑗))

+
1

𝜎𝑦
2
∑

𝑖,𝑗

𝑦𝑖𝑗
2

−
1

𝜎𝑦
4
∑

𝑗

((∑

𝑖

𝑧𝑖𝑗
𝑇  𝑦𝑖𝑗)∑

𝜂,𝑗

(∑

𝑘

𝑧𝑘𝑗 𝑦𝑘𝑗)) + 𝜇𝑇𝛴−1 𝜇

− 𝜇𝑇𝛴−1 𝜇 
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where we now have additional definitions:  

∑𝜂,𝑗 (𝜎𝑦
2, 𝑣) = (𝛴𝜂

−1 +
1

𝜎𝑦
2 ∑𝑖 𝑧𝑖𝑗 𝑧𝑖𝑗

𝑇)
−1

, 𝛴𝜂
−1 = 𝛴𝜂

−1(𝑣) 

𝜇𝜂,𝑗(𝜎𝑦
2, 𝑣) = 𝛴𝜂,𝑗 (

1

𝜎𝑦
2
∑

𝑖

𝑧𝑖𝑗  (𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗)) 

𝛴̂(𝜎𝑦
2, 𝑣) = (𝛴−1 +

1

𝜎𝑦
2
∑

𝑖,𝑗

𝑥𝑖𝑗 𝑥𝑖𝑗
𝑇

−
1

𝜎𝑦
4
∑

𝑗

((∑
𝑖

𝑥𝑖𝑗 𝑥𝑖𝑗
𝑇)𝛴𝜂,𝑗 (∑

𝑘

𝑧𝑘𝑗 𝑥𝑘𝑗
𝑇 )))

−1

 

𝜇̂(𝜎𝑦
2, 𝑣) = 𝛴̂(𝛴−1𝜇 +

1

𝜎𝑦
2
∑

𝑖,𝑗

𝑥𝑖𝑗 𝑦𝑖𝑗

−
1

𝜎𝑦
4
 ∑

𝑗

((∑
𝑖

𝑥𝑖𝑗 𝑥𝑖𝑗
𝑇)𝛴𝜂,𝑗 (∑

𝑘

𝑧𝑘𝑗 𝑥𝑘𝑗
𝑇 ))) 

Finally, we get the marginal likelihood for the more general multilevel linear model:  

𝑝(𝑀, 𝜎𝑦
2, 𝑣) =

|𝛴̂|1/2

(2𝜋𝜎𝑦
2)𝑛/2|𝛴|1/2|𝛴𝜂|

𝐽/2 ∏𝑗 |𝛴𝜂,𝑗|
1/2

×𝑒𝑥𝑝 𝑒𝑥𝑝 (−
1

2
(𝜇𝑇𝛴−1𝜇 +

1

𝜎𝑦
2 ∑𝑖,𝑗 𝑦𝑖𝑗

2 −
1

𝜎𝑦
4 ∑𝑗 ((∑𝑖 𝑧𝑖𝑗

𝑇  𝑦𝑖𝑗)𝛴𝜂,𝑗(∑𝑘 𝑧𝑘𝑗 𝑦𝑘𝑗)) − 𝜇𝑇𝛴−1 𝜇̂))    

 (7) 

Rearranging the term in square brackets and integrating out B, we get:  

𝑝(𝑀, 𝜎2) =
|𝛴|

1/2

(2𝜋𝜎2)𝑛/2|𝛴|1/2 𝑒𝑥𝑝 𝑒𝑥𝑝 (−
1

2
(𝜇𝑇𝛴−1𝜇 +

1

𝜎2
∑𝑖 𝑦𝑖

2 − 𝜇−𝑇𝛴−1𝜇)) 

  (6) 

where we define:  

𝛴(𝜎2) = (𝛴−1 + 1

𝜎2 ∑𝑖 𝑥𝑖 𝑥𝑖
𝑇)

2
,   𝜇(𝜎2) = (𝛴−1𝜇 + 1

𝜎2 ∑𝑖 𝑥𝑖 𝑦𝑖) 

Marginal likelihood for a simple multilevel linear model[3][5]  

For the simple multilevel linear model (Eq 3):  
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𝑝(𝑀, 𝜎𝑦
2, 𝜎𝜂

2) = ∫
𝑅4

∫
𝑅𝑗

1

(2𝜋)
𝑑
2|𝛴|

1
2 

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
1

2
(𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇))  

× ∏

𝑖

1

√2𝜋𝜎𝜂
2

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝜂𝑗

2

2𝜎𝜂
2
)  ×× ∏

𝑖.𝑗

1

√2𝜋𝜎𝑦
2

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗 − 𝜂𝑗)

2

2𝜎𝑦
2

)  𝑑𝜂𝑑𝛽 

=
1

𝜎𝑦
𝑛|𝛴|

1
2(2𝜇)(𝑛+𝑑)/2

∫
𝑅𝑑

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
1

2
(𝛽 − 𝜇)𝑇 𝛴−1(𝛽 − 𝜇))

×  ∏

𝑗
[
 
 
 

1

√2𝜋𝜎𝜂
2

𝑑𝜂𝑗  

]
 
 
 

𝑑𝛽 

We first consider the integral in square brackets, completing the square in 𝜂𝑗  in the 

expression:  

𝜂𝑗
2

𝜎𝜂
2
+

1

𝜎𝑦
2
∑

𝑖

(𝑦𝑖𝑗 − 𝛽
𝑇
𝑥𝑖𝑗 − 𝜂𝑗)

2

=
𝜎𝑦

2 + 𝜂𝑗 𝜎𝜂
2

𝜎𝑦
2 𝜎𝜂

2
(𝜂𝑗 −

𝜎𝜂
2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

2
∑

𝑖

(𝑦𝑖𝑗 − 𝛽
𝑇
𝑥𝑖𝑗))

2

+
1

𝜎𝑦
2
∑

𝑖

(𝑦𝑖𝑗

− 𝛽
𝑇
𝑥𝑖𝑗)

2
−

1

𝜎𝑦
2

1

𝜎𝑦
2 + 𝜂𝑖𝜎𝜂

2
 (∑

𝑖

(𝑦𝑖𝑗 − 𝛽
𝑇
𝑥𝑖𝑗))

2
 

This gives:  

1

√2𝜋𝜎𝜂
2

∫
∞

−∞

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝜎𝑗

2

2𝜎𝜂
2
−

1

2𝜎𝑦
2
∑

𝑖

(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗 − 𝜂𝑗)
2)  𝑑𝜂𝑗 

= √
𝜎𝑦

2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

2
(𝑒𝑥𝑝 𝑒𝑥𝑝 (−

1

2𝜎𝑦
2
∑

𝑖

(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖𝑗)
2 −

𝜎𝜂
2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

2
(∑

𝑖

(𝑦𝑖𝑗

− 𝛽𝑇𝑥𝑖𝑗))
2) ) 

Then, rearranging for with 𝛽 as in the linear model case:  

(𝛽 − 𝜇)𝑇𝛴−1(𝛽 − 𝜇) +
1

𝜎𝑦
2
∑

𝑖,𝑗

(𝑦𝑖,𝑗 − 𝛽𝑇𝑥𝑖,𝑗)(𝑦𝑖,𝑗 − 𝑥𝑖𝑗
𝑇 𝛽)

−
1

𝜎𝑦
2
∑

𝑗

(
𝜎𝜂

2

𝜎𝑦
4 + 𝜂𝑗𝜎𝜂

2
(∑

𝑖

(𝑦𝑖𝑗 − 𝛽𝑇𝑥𝑖,𝑗))
2) 
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(𝛽 − 𝜇̂)𝑇𝛴−1(𝛽 − 𝜇̂) + 𝜇𝑇𝛴−1𝜇 +
1

𝜎𝑦
2
∑

𝑖,𝑗

𝑦𝑖𝑗
2

−
1

𝜎𝑦
2
∑

𝑗

(
𝜎𝜂

2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

2
(∑

𝑖

(𝑦𝑖𝑗)
2) − 𝜇̂𝑇𝛴̂−1𝜇 

where we define:  

𝛴̂(𝜎𝑦
2, 𝜎𝜂

2) = (𝛴−1 +
1

𝜎𝑦
2
∑

𝑖,𝑗

𝑥𝑖𝑗 𝑥𝑖𝑗
𝑇

−
1

𝜎𝑦
2
∑

𝑗

(
𝜎𝜂

2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

2
(∑

𝑖

𝑥𝑖𝑗)(∑
𝑘

𝑥𝑘𝑗
𝑇 )))

−1

 

𝜇̂(𝜎𝑦
2, 𝜎𝜂

2) = 𝛴̂(𝛴−1𝜇 +
1

𝜎𝑦
2
∑

𝑖,𝑗

𝑥𝑖𝑗 𝑥𝑦𝑖𝑗

−
1

𝜎𝑦
2
∑

𝑗

(
𝜎𝜂

2

𝜎𝑦
2 + 𝜂𝑗𝜎𝜂

2
(∑

𝑖

𝑦𝑖𝑗)(∑
𝑘

𝑥𝑘𝑗))) 

Employing divergent constraints to estimate the random parameters of the random 

parameters model  

This method relies on employing prior information derived from outside the sample, 

which is in a mixed electronic form, and combining this data with the limited sample data 

for these restrictions [11][8][7], as follows: 

𝑎𝑖 < 𝛽 < 𝐶𝑖   𝑖 = 1……𝑔 

 
ai:Minimum enrollment 

𝐶𝑖:Maxmum enrollment 

𝑟 ≥ 𝑅𝛽      (7) 

 

r:(gx1) 

R :[g * (k+1)]  

Β : ((k+1)*1) 

𝑟 =  𝑅 𝛽 +  𝑉     (8)  

𝐸 (𝑉)  =  0, 𝐸′(𝑉𝑉′)  =  𝐺  

𝐺 =  [𝑠11  …  0 . 𝑠22 . 0 … 𝑠𝑔𝑔 ] 

[𝑦 𝑟 ] = [𝑥 𝑅 ]𝛽 + [𝑢 𝑣 ]    (9) 

 
Since: 

y∗: represents a vector of order ((nt+g) * 1) of observations of the dependent variable, which 

includes the school sample data plus the retained information. 

χ∗: a matrix of rank [(nt+g) * (k+1)] of observations of the explanatory variables, which includes 

the data of the studied sample plus prior information. 

Β: represents a vector of order ((k+1) * 1) of features to be estimated. 

u∗: represents a vector of order [(nt+g) * 1)] of random errors, which includes the random errors of 

the studied sample data and prior information. 

The random errors in Model (68-2) are subject to the following assumptions: 

𝐸 (𝑣∗)  =  𝐸 [𝑢 𝑣 ]  =  [0 0 ]   =  0 
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𝐸 [𝑢𝑢′] =  𝐸 [𝑢 𝑣 ] [𝑢 𝑣] =  𝐸 [𝑢𝑢́ 𝑢𝑣́ 𝑣𝑢́ 𝑣𝑣́ ] =  [𝛺𝑇  0 0 𝐺 ] 

: 𝛺 

𝛺𝑇𝑅𝐶́ = [𝜒́1𝜓1𝜒1 + 𝛿𝑖1
2
𝐼𝑇  ⋯  0 ⋮ ⋱ ⋮  0 ⋯ 𝜒́𝑛𝜓𝑛𝜒𝑛 + 𝛿𝑖1

2
𝐼𝑇 ] 

 
Because Model No. (9) suffers from a heterogeneity problem, the general least squares (GIS) 

method can be applied using the following formula: 

𝛽̂𝑄𝑅  =  (𝜒∗′
 𝑄−1𝜒∗)−1 𝜒∗′

𝑄−1𝑦∗   (10) 

[[𝜒′  𝑅′
] (𝛺−1

 0 0 𝐺−1
 ) [𝛺−1 𝑅 ]

−1
] [[𝜒′  𝑅′

] (𝛺−1
 0 0 𝐺−1

 ) [𝑦 𝑟 ]] 

𝛽̂𝑄𝑅 = [(𝜒′  𝛺−1 𝜒)−1 + 𝑅′𝐺−1𝑅]−1[𝜒′  𝛺−1 𝑌)−1 + 𝑅′𝐺−1𝑟]   (11) 

The estimation formula in equation (10) is unbiased for the parameters (β). 

The variance and covariance matrix of the estimators can be defined as follows 

𝑉𝑎𝑟 𝛽̂𝑄𝑅  =  [𝜒′𝛺−1𝜒 +  𝑅′𝐺−1𝑅]  (12) 
The formula (11) depends on the value of б_i^2, which is often unknown in applied reality, so it is 

estimated based on the sample data for each section and using the ordinary least squares method. 

Since: 

𝐸(𝑆𝑒𝑖
2 )  =  б𝑖

2       𝑖 =  1……  𝑛 
Therefore, the estimation formula used to estimate the random parameters (6) Swamy's model in the 

presence of varying constraints is as follows: 

𝛽̂𝑄𝑅  =  [𝜒′𝛺̂−1𝜒 + 𝑅′𝐺−1
𝑅]

−1
[𝜒′𝛺̂−1𝜒 + 𝑅′𝐺−1

𝑟]   (13) 

𝑉𝑎𝑟 𝛽̂𝑄𝑅  = (𝜒′𝛺−1𝜒 + 𝑅′𝐺−1
𝑅)−1   (14) 

It should be noted that the combined homogeneity between prior information and sample data must 

be tested before relying on it according to the following hypothesis: 

𝐻0: The existence of homogeneity between prior information and sample data. 

𝐻1: Lack of homogeneity between prior information and sample data. 

This hypothesis is chosen in the following form: 

 

 

𝜒2  =  (𝑟 −  𝑅𝛽̂𝑄𝑅)′[𝐺 + 𝑆𝑒
2 𝑅 (𝜒′𝛺̂−1𝜒)−1𝑅′]−1(𝑟 −  𝑅𝛽̂𝑄𝑅)  (15) 

1-Employing heterogeneous constraints for the random parameters regression model 

The process of employing varying constraints in estimating random parameters in the general model 

does not differ in its steps from what was presented in the section (employing constraints in the 

Swamy model), with attention to the change of the matrix Ω^* 

 

 

𝛽̂𝐺𝑄𝑅 = (𝜒′ 𝑄∗−1𝜒)−1(𝜒′𝑄∗−1 𝑌)   (16) 

𝛽̂𝐺𝑄𝑅 = [(𝜒′𝛺𝐺𝑅𝐶𝑅
∗−1  𝜒)−1 +  𝑅′𝐺−1𝑅]−1[𝜒′𝛺𝐺𝑅𝐶𝑅

∗−1 +  𝑅′𝐺−1𝑟]    (17) 

The variance and covariance matrix are as follows: 

𝑉𝑎𝑟 𝛽̂𝐺𝑄𝑅 = (𝜒′ 𝛺∗−1𝜒 +  𝑅′𝐺−1𝑅) 

𝛽̂𝐺𝑄𝑅 = [(𝜒′𝛺̂𝐺𝑅𝐶𝑅
∗−1  𝜒)−1 +  𝑅′𝐺−1𝑅]−1[𝜒′𝛺̂𝐺𝑅𝐶𝑅

∗−1 +  𝑅′𝐺−1𝑟]    (18) 

 
4. Stages of building a simulation experiment 

This part of the research includes conducting a simulation experiment using the simulation method 

in the process of comparing estimation methods and determining the optimal methods based on the 

two comparison scales, the Akaike criterion (AIC) and the mean square error (MSE). Using the 
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Matlab program, the program was created and a Monte Carlo simulation was carried out, where the 

simulation experiments relied on generating data. Multilevel regression model 

𝑌 = 𝑋𝛽 + 𝑢 (Level 1)  

𝛽 = 𝑔𝛾 + 𝑒 (Level-2)      (19) 

𝑡 =  1,2,3, … (𝑇 = 15, 𝑇 = 40, 𝑇 = 60), 𝑖 = 1, 2, 3, 𝑗 = 0, 1, 2, 3, 𝑁 = 3𝑇   
The dependent and explanatory variables, random errors, and parameters are as follows: 

𝑌 = [𝑌1 𝑌2 𝑌3 ](3𝑇×1) , 𝑋 = [𝑋1 0 0 0 𝑋2 0 0 0 𝑋3 ](3𝑇×3𝑃) , 𝛽 = [𝛽0 𝛽1 𝛽2 ]
(3𝑃×1)

 ,  

𝑢 = [𝑢1 𝑢2 𝑢3 ](3𝑇×1), 𝑔 = [𝑔1 0 0 0 𝑔1 0 0 0 𝑔3 ](3×3), 𝛾 = [𝛾1 𝛾2 𝛾3 ]
(6×1)

 , 𝑒 =

[𝑒1 𝑒2 𝑒3 ](3×1)  
To conduct the simulation under the assumptions of a multilevel regression model (with two levels) 

for the model where the data was generated using the Bootstrap Sampling method; The data will be 

generated according to the following steps: 

Generating random errors error term according to a normal distribution with a mean and variance 

defined as follows according to the assumed sample sizes (15, 40, 60), as the generation was done: 
 

𝑢1: 𝑛𝑜𝑟𝑚𝑎𝑙 (0.04 ,0.5) 

𝑢2: 𝑛𝑜𝑟𝑚𝑎𝑙 (0.3,0.5) 

𝑢3: 𝑛𝑜𝑟𝑚𝑎𝑙 (0.6 ,0.5) 
Initial values were assumed for the parameters as shown in the following table 1. 

 

Table 1. Initial Value 

𝛽2 𝛽1 𝛽0 parameters 

3 1.5 1 Initial value 

 

Calculate the values of the variables Y (first iteration) for all three cross-sections based on the values 

of the random errors and the default values of the parameters described in steps 1 and 2, respectively, 

and the real data as explanatory variables. 

 

Table 2. The Estimators of The Maximum Likelihood Method (MLE) and the Identical 

Constraints Method (RCR) 

RCR MLE 
Methods 

𝑗  𝑛 = 3𝑇 

103.067 103.044 0 

15 1.48883 1.48885 1 

2.99992 2.99997 2 

56.89465 56.88664 0 

40 1.48551 1.48554 1 

2.99991 2.99996 2 

1.453 115.88 0 

60 1.4871 1.48712 1 

2.99993 2.99998 2 

 

It is noted from Table (2) that the estimators of the maximum likelihood method (MLE) and the 

identical constraints method (RCR) are very close in value for all Level-1 parameters of the multi-

level model (with two levels) assumed in the simulation experiment. On the contrary, we find that 

the estimator of the maximum possibility method (MLE) has given estimators It differs from the 
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RCR method, but the difference is not large. This also applies to the estimators of the Level-2 

parameters for the same model and for the same estimation methods, as shown in the following 

table: 

 
Table 3. Level 2 parameter estimates from the simulation model when It is a pooled model 

RCR MLE 
 الطريقة

N=3T 

0.01471 𝛾01 56.955 𝛾00 0.014 𝛾01 61.312 𝛾00  

 

15 

0.3111 𝛾11 1.46215 𝛾10 0.312 𝛾11 1.463 𝛾10 

0.0056 𝛾21 2.99829 𝛾20 0.048 𝛾21 3.043 𝛾20 

0.0463 𝛾01 480.08 𝛾00 0.005 𝛾01 482.9 𝛾00  

 

40 

0.0021 𝛾11 1.49 𝛾10 0.002 𝛾11 1.49 𝛾10 

0.009 𝛾21 2.9983 𝛾20 0.007 𝛾21 3 𝛾20 

0.008 𝛾01 427.025 𝛾00 0.008 𝛾01 427.0891 𝛾00  

 

60 

0.008 𝛾11 1.47027 𝛾10 0.008 𝛾11 1.47067 𝛾10 

0.00023 𝛾21 2.99913 𝛾20 0.00023 𝛾21 2.99994 𝛾20 

 

 
Table 4. Values of the AIC and MSE parameters of the PMRM-2 simulation model when Pooled 

Model 

 

 

 

 

 

 

 

 

 

 

 
It is clear from Table (4) that the values of the AIC and MSE coefficients for the two maximum 

likelihood methods (MLE) and the identical constraints method (RCR) are very close at N = 15, and 

equal for the two sample sizes N = 40 and N = 60, which indicates that their efficiency in the 

estimation process is close or equal, and when compared Together, we find that the MLE method 

has smaller values for the comparison coefficients (AIC) and MSE than the identical constraints 

method, and for all sample sizes adopted in the research (15, 40, 60). It is also noted that the values 

of the coefficients AIC and MSE increase as the sample size increases. 

 

5. Conclusion 
Through the beginners Akaike as well as the mean square error it is recognized that the maximum 

likelihood method is the best in estimation. We note that the larger the eye size, the better the 

estimate, and also that the mean square error begins to decline. It is clear from Table (4) that the 

values of the AIC and mse coefficients for the maximum possibility method and the identical 

constraints method are very close at N = 15, and equal for the two sample sizes N = 40 and N = 60, 

which indicates the closeness or equality of their efficiency in the estimation process, according to 

the coefficients ( Standard comparison of AIC and MSE in the process of estimating the parameters 

of a multilevel model (with two levels) for PMRM-2 panel data when the model is pooled. It is also 

noted that the values of the coefficients AIC and BIC increase as the sample size increases. 

RCR MLE 
method 

Standard N=3T 

349.1869 349.1872 AIC 
15 

357.5941 357.5944 MSE 

586.8427 586.8427 AIC 
40 

598.4336 598.4336 MSE 

2544.094 2544.097 AIC 
60 

2564.591 2564.593 MSE 
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