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Abstract: 

Any surjective quadratic operator defined on the simplex 3S  corresponds to some self matching. 

This operator is a homeomorphism of the simplex 3S . A quadratic operator defined on the simplex 
3S  is surjective if and only if it is bijective. 
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We define 24 classes of surjective quadratic operators and prove that they exhaust the entire set of 

surjective quadratic operators. To describe these classes, we use the well-known self-coincidence 

groups of regular polyhedra [1], since 
3S  is a regular tetrahedron.  

Note that self-combination refers to displacement, i.e. metric-preserving transformation. The self-

alignment group of the tetrahedron in 3R  consists of 12 elements. But if we consider a simplex in 
4R , then it is easy to show that the group of self-combinations of the tetrahedron, G in, consists of 

the group of all permutations of the vertices of this tetrahedron, i.e.  24

1


llG  . 

We say that a quadratic operator V defined on a simplex corresponds to some self-matching if V 

maps vertices of the simplex to 
3S vertices and edges of the simplex to l edges in the same way 

as self-matching 
3S  24,1, ll .  

Theorem 1.1. Any surjective quadratic operator defined on the simplex 3S corresponds to some 

self matching 24,1, ll . 

We reduce the proof of Theorem 1.1 to the proof of the following three lemmas. 
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Lemma 1.1. Let V-surjective quadratic operator. Then no interior point of the simplex 
3S  cannot 

go when mapping V to one of the vertices of the simplex. 

Lemma 1.2. Let V be a surjective quadratic operator. Then no interior point of the simplex 
3S  can 

pass under the mapping V to the boundary point of the simplex. 

Lemma 1.3. Let V be a surjective quadratic operator. Then no boundary point other than vertices 

can go under the mapping V to one of the vertices of the simplex. 

Proof of Theorem 1.1. By virtue of Lemmas 1.1-1.3, the surjective quadratic operator maps vertices 

of a simplex to vertices and edges to edges, i.e. a surjective quadratic operator corresponds to some 

self-combination 24,1, ll . 

Let us now determine what kind of quadratic operators correspond to each self-alignment of a 

regular tetrahedron. 

Let's start with identical self-combination 1 . The quadratic operator V corresponding to this self-

matching must satisfy the following conditions:   4,3,2,1,  lAAV ll  and also 

              414131312121 ,,,,,,,, AAAAVAAAAVAAAAV   

              434342423232 ,,,,,,,, AAAAVAAAAVAAAAV   

If we rewrite these conditions using (1), taking into account that 

       1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1 4321 AAAA  then we get the following relations: 
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4,444,334,224,11
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2,442,332,222,11

1,441,331,221,11
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 (2) 

Now, since an arbitrary point belonging to the edge  21, AA  has coordinates  0,0,1, 11 xx   then 

from     2121 ,, AAAAV   has 

   113,12
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13,22

2

13,113 1210 xxPxPxPx   

   114,12

2

14,22

2

14,114 1210 xxPxPxPx   

And from (1) it follows that 02,02 4,123,12  PP  where 03,12 P , 04,12 P ; similarly from 

         41413131 ,,,,, AAAAVAAAAV  ,     3232 ,, AAAAV  ,     4242 ,, AAAAV  , 

    4343 ,, AAAAV  .  

We have  

00000 2,142,131,341,241,23  PPPPP  

00000 2,234,132,343,243,14  PPPPP  
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Thus, the quadratic operators corresponding to self-matching 1  have the following form:  
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Where  1,0,,,,,  - arbitrary numbers. 

Obviously, a convex linear combination of quadratic operators corresponding to the self-matching 

1  also corresponds to this self-matching. 

Let us show that the quadratic operator  2/1,2/1,2/1,2/1,2/11V  coincides with self-

combination indeed, at 2/1,,,,,   квадратичный оператор 

 2/1,2/1,2/1,2/1,2/1,2/11V  is the identity operator, because. 

 
 
 

 



















432144

432133

432122

432111

xxxxxx

xxxxxx

xxxxxx

xxxxxx

 

whence due to the fact that 14321  xxxx , we get that  2/1,2/1,2/1,2/1,2/1,2/11V  

coincides with self-combination 1 . 

For quadratic class operators   ,,,,,1V  transformation (1) takes the form: 
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 (3) 

A quadratic operator of the form [3] belongs to the class of Voltaire operators. This class of 

operators was considered in [3]. In particular, for Volterian quadratic operators it was proved that 

operators of this type are one-to-one and mutually continuous operators [3]. Hence we have the 

following. 
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