Surjective Quadratic Operator Corresponding to Some SelfCouplings

Meyliev Kh. J., Poshokulova M. K., Jontimirov J. A., Jumyazov J. A.
Karshi Institute of Irrigation and Agrotechnologies

Abstract

: Any surjective quadratic operator defined on the simplex S^{3} corresponds to some self matching. This operator is a homeomorphism of the simplex S^{3}. A quadratic operator defined on the simplex S^{3} is surjective if and only if it is bijective.

Keywords: surjective, quadratic, operator, simplex, homeomorphism. bijective. self-combination, tetrahedron, transformations, group, vertex, displacement, convex, linear, combination, composition.

On an $S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{l} \geq 0, \quad l=\overline{1,4} ; \sum_{l=1}^{4} x_{l}=1\right\}$ arbitrary quadratic operator V defined as follows

$$
\begin{equation*}
(V x)_{k}=\sum_{l, j=1}^{4} P_{l j, k} x_{l} x_{j}, \quad k=\overline{1,4} \tag{1}
\end{equation*}
$$

where $P_{l j, k} \geq 0, \quad P_{l j, k}=P_{j l, k,} \quad \sum_{l, j=1}^{4} P_{l j, k}=1$
We define 24 classes of surjective quadratic operators and prove that they exhaust the entire set of surjective quadratic operators. To describe these classes, we use the well-known self-coincidence groups of regular polyhedra [1], since S^{3} is a regular tetrahedron.
Note that self-combination refers to displacement, i.e. metric-preserving transformation. The selfalignment group of the tetrahedron in R^{3} consists of 12 elements. But if we consider a simplex in R^{4}, then it is easy to show that the group of self-combinations of the tetrahedron, G in, consists of the group of all permutations of the vertices of this tetrahedron, i.e. $G=\left\{\pi_{l}\right\}_{l=1}^{24}$.
We say that a quadratic operator V defined on a simplex corresponds to some self-matching if V maps vertices of the simplex to S^{3} vertices and edges of the simplex to π_{l} edges in the same way as self-matching $S^{3} \pi_{l}, l=\overline{1,24}$.

Theorem 1.1. Any surjective quadratic operator defined on the simplex S^{3} corresponds to some self matching $\pi_{l}, l=\overline{1,24}$.

We reduce the proof of Theorem 1.1 to the proof of the following three lemmas.
| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 3 Issue: 6
Lemma 1.1. Let V-surjective quadratic operator. Then no interior point of the simplex S^{3} cannot go when mapping V to one of the vertices of the simplex.

Lemma 1.2. Let V be a surjective quadratic operator. Then no interior point of the simplex S^{3} can pass under the mapping V to the boundary point of the simplex.
Lemma 1.3. Let V be a surjective quadratic operator. Then no boundary point other than vertices can go under the mapping V to one of the vertices of the simplex.
Proof of Theorem 1.1. By virtue of Lemmas 1.1-1.3, the surjective quadratic operator maps vertices of a simplex to vertices and edges to edges, i.e. a surjective quadratic operator corresponds to some self-combination $\pi_{l}, l=\overline{1,24}$.

Let us now determine what kind of quadratic operators correspond to each self-alignment of a regular tetrahedron.

Let's start with identical self-combination π_{1}. The quadratic operator V corresponding to this selfmatching must satisfy the following conditions: $V\left(A_{l}\right)=A_{l}, l=1,2,3,4$ and also

$$
\begin{aligned}
& V\left(\left[A_{1}, A_{2}\right]\right)=\left[A_{1}, A_{2}\right], \quad V\left(\left[A_{1}, A_{3}\right]\right)=\left[A_{1}, A_{3}\right], V\left(\left[A_{1}, A_{4}\right]\right)=\left[A_{1}, A_{4}\right] \\
& V\left(\left[A_{2}, A_{3}\right]\right)=\left[A_{2}, A_{3}\right], \quad V\left(\left[A_{2}, A_{4}\right]\right)=\left[A_{2}, A_{4}\right], V\left(\left[A_{3}, A_{4}\right]\right)=\left[A_{3}, A_{4}\right]
\end{aligned}
$$

If we rewrite these conditions using (1), taking into account that $A_{1}(1,0,0,0), A_{2}(0,1,0,0), A_{3}(0,0,1,0), \quad A_{4}(0,0,0,1)$ then we get the following relations:

$$
\begin{array}{llll}
P_{11,1}=1 & P_{22,1}=0 & P_{33,1}=0 & P_{44,1}=0 \\
P_{11,2}=0 & P_{22,2}=1 & P_{33,2}=0 & P_{44,2}=2 \\
P_{11,3}=0 & P_{22,3}=0 & P_{33,3}=1 & P_{44,3}=0 \tag{2}\\
P_{11,4}=0 & P_{22,4}=0 & P_{33,4}=0 & P_{44,4}=1
\end{array}
$$

Now, since an arbitrary point belonging to the edge $\left[A_{1}, A_{2}\right]$ has coordinates $\left(x_{1}, 1-x_{1}, 0,0\right)$ then from $V\left(\left[A_{1}, A_{2}\right]\right)=\left[A_{1}, A_{2}\right]$ has

$$
\begin{gathered}
0=x_{3}^{\prime}=P_{11,3} x_{1}^{2}+P_{22,3}\left(1-x_{1}\right)^{2}+2 P_{12,3} x_{1}\left(1-x_{1}\right) \\
0=x_{4}^{\prime}=P_{11,4} x_{1}^{2}+P_{22,4}\left(1-x_{1}\right)^{2}+2 P_{12,4} x_{1}\left(1-x_{1}\right)
\end{gathered}
$$

And from (1) it follows that $2 P_{12,3}=0,2 P_{12,4}=0$ where $P_{12,3}=0, P_{12,4}=0$; similarly from $V\left(\left[A_{1}, A_{3}\right]\right)=\left[A_{1}, A_{3}\right], V\left(\left[A_{1}, A_{4}\right]\right)=\left[A_{1}, A_{4}\right], \quad V\left(\left[A_{2}, A_{3}\right]\right)=\left[A_{2}, A_{3}\right], \quad V\left(\left[A_{2}, A_{4}\right]\right)=\left[A_{2}, A_{4}\right]$, $V\left(\left[A_{3}, A_{4}\right]\right)=\left[A_{3}, A_{4}\right]$.

We have

$$
\begin{array}{lllll}
P_{23,1}=0 & P_{24,1}=0 & P_{34,1}=0 \quad P_{13,2}=0 & P_{14,2}=0 \\
P_{14,3}=0 & P_{24,3}=0 & P_{34,2}=0 & P_{13,4}=0 & P_{23,2}=0
\end{array}
$$

Thus, the quadratic operators corresponding to self-matching π_{1} have the following form:

$$
V_{1}(\alpha, \beta, \gamma, \xi, \eta, \delta)=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & \alpha & \beta & \gamma & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1-\alpha & 0 & 0 & \xi & \eta & 0 \\
0 & 0 & 1 & 0 & 0 & 1-\beta & 0 & 1-\xi & 0 & \delta \\
0 & 0 & 0 & 1 & 0 & 0 & 1-\gamma & 0 & 1-\eta & 1-\delta
\end{array}\right]
$$

Where $\alpha, \beta, \gamma, \xi, \eta, \delta \in[0,1]$ - arbitrary numbers.
Obviously, a convex linear combination of quadratic operators corresponding to the self-matching π_{1} also corresponds to this self-matching.
Let us show that the quadratic operator $V_{1}(1 / 2,1 / 2,1 / 2,1 / 2,1 / 2)$ coincides with selfcombination indeed, at $\alpha, \beta, \gamma, \xi, \eta, \delta=1 / 2$ квадратичный оператор $V_{1}(1 / 2,1 / 2,1 / 2,1 / 2,1 / 2,1 / 2)$ is the identity operator, because.

$$
\left\{\begin{array}{c}
x_{1}^{\prime}=x_{1}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
x_{2}^{\prime}=x_{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
x_{3}^{\prime}=x_{3}\left(x_{1}+x_{2}+x_{3} x_{4}\right) \\
x_{4}^{\prime}=x_{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)
\end{array}\right.
$$

whence due to the fact that $x_{1}+x_{2}+x_{3}+x_{4}=1$, we get that $V_{1}(1 / 2,1 / 2,1 / 2,1 / 2,1 / 2,1 / 2)$ coincides with self-combination π_{1}.

For quadratic class operators $V_{1}(\alpha, \beta, \gamma, \xi, \eta, \delta)$ transformation (1) takes the form:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}\left[1+(2 \alpha-1) x_{2}+(2 \beta-1) x_{3}+(2 \gamma-1) x_{4}\right] \tag{3}\\
x_{2}^{\prime}=x_{2}\left[1+(1-2 \alpha) x_{1}+(2 \xi-1) x_{3}+(2 \eta-1) x_{4}\right] \\
x_{3}^{\prime}=x_{3}\left[1+(1-2 \beta) x_{1}+(1-2 \xi) x_{2}+(2 \delta-1) x_{4}\right] \\
x_{4}^{\prime}=x_{4}\left[1+(1-2 \gamma) x_{1}+(1-2 \eta) x_{2}+(1-2 \delta) x_{3}\right]
\end{array}\right.
$$

A quadratic operator of the form [3] belongs to the class of Voltaire operators. This class of operators was considered in [3]. In particular, for Volterian quadratic operators it was proved that operators of this type are one-to-one and mutually continuous operators [3]. Hence we have the following.

Literature

1. Александров П.С. Введение в теорию групп. М.: Учпедиз, 1938. 125с.
2. Бернштейн С.Н. Решение одной математической проблемы, связаной с теорией наследственности. Уч. Зап. Н.И. кафедр. Украины, отд.матем.1924, вып.1.с 83-115.
3. Ганиходжаев Р.Н. Квадратичные стохастические операторы. Функции Ляпунова и турниры.// Матем. Сб.,1992.Т.183, №8, с. 119-140.
4. Генетика и наследственность. // Сб .статей. Мю,1987. 300 с.
